

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 1 of 14

ENME 489Y – Remote Sensing: Spring 2018
Department of Mechanical Engineering

Due Date Thursday, April 5th, 2018 by 9:30 am

Submission
Information

 Submit email response to Question #1 via mitchels@umd.edu
 Submit .pdf response to Question #4 via Gradescope

Introduction to field deployable lidar, Inertial Measurement Unit (IMU), and pySerial

General Reminder: keep recording pictures & videos of each aspect of your project to edit/stitch
together in your semester project video and final project presentation!

Question #1

In the Spring 2017 edition of 489Y, students were permitted free creative reign to design and integrate
their lidar sensor. This semester, students are once again free to design and integrate their sensor as
they desire. However, we are also providing a standardized, 3D-printable mount design should students
prefer to use a more direct method. Solid model .stl files are provided via ELMS > Modules > Project.

The standardized mount consists of a single holder plate. This plate has mounting holes for an Arduino
Uno, Raspberry Pi, Raspberry Pi camera, and a LED line laser:

The plate also has miscellaneous holes and slots allocated as
cable tie downs, etc., along with two rectangular cutouts that
can be used to tie the plate into a tripod via the 3D-printable
connecting plate shown at right.

While it is preferable to print the plate as one solid piece (think
structural rigidity), students also have access to a 2-part solid
model file(s) that can be epoxied together, in the event your 3D
printer cannot handle the size of the single plate design.

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 2 of 14

Here is one incarnation of the assembled, aligned instrument. Again - students are not required to use
the standardized mount should they prefer more creative approaches to integrating their lidar sensor.

Assemble your field-deployable lidar sensor
(Dr. Mitchell’s is shown at right).

Record a minimum 30 second video clip of
yourself describing the sensor configuration
and demonstrating any pertinent features
(feel free to use your cell phone camera at
this point). Be sure to point out the essential
hardware components (e.g. transmitter,
receiver, software interfaces, etc.) and
consider discussing why you designed the
sensor the way you did.

Upload the video to your YouTube account,
then email mitchels@umd.edu the link to the
video.

Consider taking multiple videos as you
assemble the lidar, to edit/stitch together in
your semester project video!

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 3 of 14

Question #2 (nothing to submit)

In Assignment #4 we explored the geometrical range measurement using a single beam LED laser and a
Raspberry Pi camera. By calibrating the bistatic setup we were able to collect rudimentary range
measurements. Here we expand upon the single beam technique, replacing the single beam laser with a
line laser, which dramatically improves the data acquisition rate of the lidar.

Single beam laser bistatic configuration (left) vs. line laser bistatic configuration (right)

This sensor configuration requires angular alignment of the line laser with the Raspberry Pi camera. To
begin, head over to GitHub and download laser_alignment_image.py:

https://github.com/oneshell/enme489y

This script opens the RPi camera feed to support the alignment process. The laser_alignment_image.py
script plots a series of vertical green lines along the camera frame. The spacing of these lines can be
adjusted as desired. Begin the alignment process by connecting the LED line laser to a 5V power source,
such as the Arduino Uno or a GPIO pin on the RPi.

Note: regardless of how you have mechanically integrated your sensor, it is imperative that the RPi
camera be rigidly mounted prior to beginning the alignment process. Once the lidar is aligned, the axis
of the camera and the axis of the laser should remain aligned and parallel throughout the semester, so
ensure the RPi camera is securely mounted before continuing!

While monitoring the camera’s video feed, rotate and align the line laser such that the red laser line is
parallel to the green alignment lines. See example images on the next page. Leave the video stream
running and secure the laser in place (e.g. using epoxy).

After properly securing the laser, ensure the alignment of the laser line has not shifted. Double check
that both the RPi camera and line laser are rigidly secured in their respective mounts. Pressing the q key
will end the video feed.

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 4 of 14

Line laser orientation at the beginning of the alignment process (not currently aligned). Note the lack of

parallelism between the red laser line and the green vertical alignment lines.

Line laser aligned. Red laser line now parallel with green vertical alignment lines.

It is imperative that the RPi camera and laser be rigidly mounted to maintain their alignment and
ensure proper functioning of the lidar sensor throughout the semester.

Compared to the single laser beam configuration of Assignment #4, integration of the line laser is
equivalent to stacking multiple single beam LED lasers on top of each other to form an array of beams
or, in this case, a line.

In effect, each row of pixels of the camera frame is now a single laser beam lidar!

Thought: consider recording videos of the laser alignment process, both with your cell phone and with
your RPi, to use in your semester video!

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 5 of 14

Question #3 (nothing to submit)

As discussed in lecture, to geolocate lidar data requires the sensor to record:

1. Range data, describing the distance between the sensor and the target
2. GPS data, describing the latitude-longitude-altitude position of the sensor
3. IMU data, describing the pitch-roll-yaw pointing of the sensor

With these sources of information, each lidar range measurement can be transformed into a XYZ
coordinate in 3-dimensional space.

For 489Y, we collected GPS data in Assignment #1 to identify the location of each target on campus. No
further GPS data is required.

Initial range measurements were recorded with the prototype single beam lidar in Assignment #4. Now
that we have the line laser installed and aligned, let’s evaluate how to record IMU data with our lidar
sensor. To measure the pointing angle of the RPi lidar, we have two options:

1. Use the accelerometer in your cell phone via an app such as Bubble
Level (for Android) or equivalent.

2. Use an accelerometer chip such as the Analog Devices ADXL327, which
can be found in the Digilent Analog parts kit (Dr. Mitchell also has a very
limited supply of chips available for loan).

If using your cell phone, securely mount the phone to the lidar mounting plate.
Enter the angle reading provided by the app when saving range data in Python
(more information on this coming in Assignment #6).

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 6 of 14

If using the Analog Devices chip, begin by reading through the datasheet available at:

http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL327.pdf

To better understand how the accelerometer chip functions, checkout:

http://www.digikey.com/videos/en/vp/5026329017001

Let’s begin by connecting the chip to an Arudino and ensuring we can read the Arduino serial stream via
the RPi using Python. Download and read through Assignment #5 – Supplemental.pdf for a description
of the ADXL327 accelerometer, including how to properly wire up the chip to an Arduino. Using the
Arduino code provided at the end of this assignment, ensure that the accelerometer chip is functioning
properly by opening the Serial Monitor and viewing the x, y, z angle outputs.

Open up a browser in your RPi and navigate to https://pypi.python.org/pypi/pyserial, then download
pyserial-3.3.tar.gz to your RPi. The file will be located in the \Downloads folder on your RPi.

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 7 of 14

To complete the install of pySerial, checkout: https://www.youtube.com/watch?v=I7fyFb7gNEQ

Alternatively, consider running a pip install pyserial to install pySerial on your RPi.

Due to the time lag associated with OpenCV, there is no need to transfer data quickly over the serial
stream. Try setting your baud rate to 1200 in both the Arduino and pySerial programs.

The following is a good tutorial describing serial communication between Arduino and USB:

https://oscarliang.com/connect-raspberry-pi-and-arduino-usb-cable/

Here is a similar Arduino reference: http://playground.arduino.cc/Interfacing/Python

With the ADXL327 powered and serial communication between the ADXL327 and Arudino established,
create a new file called serialtest.py by typing nano serialtest.py into a terminal window. Input the
following code and save the file (press ‘Y’) when exiting:

import serial

ser = serial.Serial('/dev/ttyACM0', 1200)

while 1:
 print(ser.readline())

Execute the code by typing python serialtest.py into the command line and ensure that you are properly
reading and displaying the Arduino output serial stream properly by tiling the accelerometer.

With the bistatic lidar and the ADXL327 (or cell phone equivalent), each lidar range measurement can be
transformed into a XYZ coordinate!

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 8 of 14

Question #4

Here we utilize the triangulation lidar range measurement from
Assignment #4 and upgrade the sensor calibration from a single beam
laser to the line laser. Identify a wall free of obstructions and setup
the lidar orthogonal to the wall surface (image at right).

Head over to GitHub and download
laser_alignment_image_blank.py:

https://github.com/oneshell/enme489y

This script opens the RPi camera feed to support the
alignment process. The laser_alignment_image_blank.py script asks the user to
“Please enter distance from wall, in inches: “. Enter the distance measured with a
tape measure and hit the Enter key. The script will echo the distance value you
entered into the terminal window (to confirm the number) then opens the video feed.

Notice that the distance number has now been added to the top right corner of the
video feed via the cv2.putText() command.

With the instrument aligned orthogonal to the wall, hit the m key. This will save a .jpg
file on your RPi, the filename of which is defined by the distance from the wall. To
confirm you have successfully recorded the .jpg, in a terminal window type:

ls

xdg-open distance_value_here.jpg

This will open the saved .jpg file.

Run the laser_alignment_image_blank.py script and save .jpg files while ranging to the
wall, for known distances from 0 to 10 feet, in increments of 6 inches. An example of
this sequence is shown in the collage at left. Once complete, type ls into a terminal
window and confirm the .jpg files have successfully saved to your RPi.

Transfer all of the .jpg files created during this exercise from your RPi to your laptop.
This can be accomplished in several ways:

1. Upload images to Gmail and email files
2. Insert a USB into your RPi and copy files
3. My favorite: FTP into the RPi from your laptop using an FTP

client such as WinSCP. The Host name will be the IP address of your
RPi. The User name and Password are the same as when using
Putty and VNC Viewer (typically pi and raspberr or raspberry).

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 9 of 14

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 10 of 14

With all .jpg files transferred to your laptop, specifically your working directory in PyCharm, head over to
GitHub and download laser_alignment.py:

https://github.com/oneshell/enme489y

Let’s explore this script, which will be executed in PyCharm. When writing this Assignment, Dr. Mitchell
placed his alignment images in a folder on his laptop named alignment_images. Therefore, the
laser_alignment.py script initially finds all .jpg files located in the /alignment_images folder. Consider
updating the code as required for your setup:

files = glob.glob('alignment_images/*.jpg')

The script then defines the lower and upper color bounds to apply when masking each image. These
can be tuned using the colorpicker.py script:

Execute the laser_alignment.py script in PyCharm. The script loops through each .jpg file in the
directory, identifies the red laser pixels in the center row of the image (y = 360 pixels), averages the
pixels together to identify the center pixel, and then creates a laserlog.txt file which stores the distance
and corresponding pixel coordinates to file.

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 11 of 14

Similar to the calibration exercise of Assignment #4, the script then plots the acquired range data (red)
on top of the theoretical output (blue). Adjust the values of ro and rpc as required for your lidar.

As with Assignment #4, paste your combined plot into a .doc file, generate 1-2 paragraphs describing
how well your data aligns with the theoretical values, and upload a .pdf of the file to Gradescope.

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 12 of 14

Congratulations! Your field deployable lidar system is aligned, calibrated, and ready to head out on
campus to map your target.

In Assignment #6 we will explore how to create 3D point clouds with the acquired range and IMU data,
but plan to begin mapping your target asap!

Remember to take pictures & videos of yourself as you are on campus mapping for your semester
project video and final presentation!

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 13 of 14

Assignment 5 – Supplemental.pdf
 Credit: Original code written by Tommy Jones, UMD ‘17
 Available on GitHub: https://github.com/oneshell/enme489y/blob/master/IMUchipv2.ino

Arduino Code to communicate with IMU

// ENME 489Y: Remote Sensing
// Spring 2017

// ADXL327 Accelerometer
// http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL327.pdf

// Note: 3.3V required to power the accelerometer chip!

// ADC map
const int x = A1; // x-axis yellow
const int y = A2; // y-axis green
const int z = A3; // z-axis white wire
const int samples = 400; // number of samples averaged per 100ms
const int gap = 100; // time for each reading

void setup() {
 Serial.begin(1200);
}

void loop() {

 // initialize voltage sum variables
 float totalx = 0;
 float totaly = 0;
 float totalz = 0;
 // initialize angle variables
 int xAngle = 0;
 int yAngle = 0;
 int zAngle = 0;

 // loop and record voltages
 for (int i =1; i<= samples; i++)
 {

 int xAngleRead = analogRead(x); // angle for x
 int yAngleRead = analogRead(y); // angle for y
 int zAngleRead = analogRead(z); // angle for z

 //first number of map is 0 degrees, second number is at 90 degrees; less than 0 is negative degrees
 // x
 // adds up all the voltages

 ENME 489Y Assignment #5

Mitchell, Spring 2018

Page 14 of 14

 totalx = xAngleRead + totalx;
 totaly = yAngleRead + totaly;
 totalz = zAngleRead + totalz;

 delay(gap / samples); // loop delay
 }

 // average voltages
int xAngleAve = totalx / samples;
int yAngleAve = totaly / samples;
int zAngleAve = totalz / samples;

 // convert average voltages to angles, given calibration map
xAngle = map(xAngleAve, 342, 435, 0, 90); //angle for x
yAngle = map(yAngleAve, 333, 425, 0, 90); //angle for y
zAngle = map(zAngleAve, 333, 425, 0, 90); //angle for z

// Send angle measurements to the serial stream to be read by the Raspberry Pi
// Format: x y z
String xyzString = String(xAngle) + " " + String(yAngle) + " " + String(zAngle);
//Serial.print(xyzString);
Serial.println(xyzString);

// The following code can be uncommented to print analog measurements to the screen
// This information is useful when performing the initial angle calibration
// Otherwise, leave this section commented out
//String xyzString = String(analogRead(x)) + "," + String(analogRead(y)) + "," + String(analogRead(z));
//Serial.print(xyzString);
//Serial.println();

}

